LACAIS: Learning Automata Based Cooperative Artificial Immune System for Function Optimization
نویسندگان
چکیده
Artificial Immune System (AIS) is taken into account from evolutionary algorithms that have been inspired from defensive mechanism of complex natural immune system. For using this algorithm like other evolutionary algorithms, it should be regulated many parameters, which usually they confront researchers with difficulties. Also another weakness of AIS especially in multimodal problems is trapping in local minima. In basic method, mutation rate changes as only and most important factor results in convergence rate changes and falling in local optima. This paper presented two hybrid algorithm using learning automata to improve the performance of AIS. In the first algorithm entitled LA-AIS has been used one learning automata for tuning the hypermutation rate of AIS and also creating a balance between the process of global and local search. In the second algorithm entitled LA-CAIS has been used two learning automata for cooperative antibodies in the evolution process. Experimental results on several standard functions have shown that the two proposed method are superior to some AIS versions. Permissions & Reprints Download PDF (360.5 KB) Look Inside Book Chapter Tracking Extrema in Dynamic Environments Using a Learning Automata-Based Immune Algorithm Alireza Rezvanian Book Chapter CellularDE: A Cellular Based Differential Evolution for Dynamic Optimization Problems Vahid Noroozi Book Chapter Learning Automata Based Algorithms for Mapping of a Class of Independent Tasks over Highly Heterogeneous Grids S. Ghanbari Book Chapter A New Classifier Based on Attribute Weighted Artificial Immune System springer.com springerprotocols.com English GO Iran MSRT – e-journals HOME SHOPPING CART MY SPRINGERLINK BROWSE TOOLS HELP LOG IN SEARCH FOR AUTHOR OR EDITOR PUBLICATION VOLUME ISSUE PAGE GO Advanced Search Search Tips Page 1 of 2 SpringerLink Abstract 5/4/2011 http://www.springerlink.com/content/g4q40580h66705t8/
منابع مشابه
Semantic Preserving Data Reduction using Artificial Immune Systems
Artificial Immune Systems (AIS) can be defined as soft computing systems inspired by immune system of vertebrates. Immune system is an adaptive pattern recognition system. AIS have been used in pattern recognition, machine learning, optimization and clustering. Feature reduction refers to the problem of selecting those input features that are most predictive of a given outcome; a problem encoun...
متن کاملLocating Critical Failure Surface in Rock Slope Stability with Hybrid Model Based on Artificial Immune System and Cellular Learning Automata (CLA-AIS)
Locating the critical slip surface with the minimum factor of safety for a rock slope is a difficult problem. In recent years, some modern global optimization methods have been developed with success in treating various types of problems, but very few of such methods have been applied to rock mechanical problems. In this paper, use of hybrid model based on artificial immune system and cellular ...
متن کاملOptimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کاملEnhanced Comprehensive Learning Cooperative Particle Swarm Optimization with Fuzzy Inertia Weight (ECLCFPSO-IW)
So far various methods for optimization presented and one of most popular of them are optimization algorithms based on swarm intelligence and also one of most successful of them is Particle Swarm Optimization (PSO). Prior some efforts by applying fuzzy logic for improving defects of PSO such as trapping in local optimums and early convergence has been done. Moreover to overcome the problem of i...
متن کاملMulti-Objective Learning Automata for Design and Optimization a Two-Stage CMOS Operational Amplifier
In this paper, we propose an efficient approach to design optimization of analog circuits that is based on the reinforcement learning method. In this work, Multi-Objective Learning Automata (MOLA) is used to design a two-stage CMOS operational amplifier (op-amp) in 0.25μm technology. The aim is optimizing power consumption and area so as to achieve minimum Total Optimality Index (TOI), as a new...
متن کامل